

Building the Bridge from Both Ends: Comprehensive Extraction and Zero Waste Strategies for NORM Industry Tailings and Residues

Hari Tulsidas, Julian Hilton, Brian Birky, Malika Moussaid, T.K. Haldar, Rafael Garcia Tenorio International Atomic Energy Agency, Aleff Group, Florida Industrial and Phosphate Research Institute, University of Seville

The terms

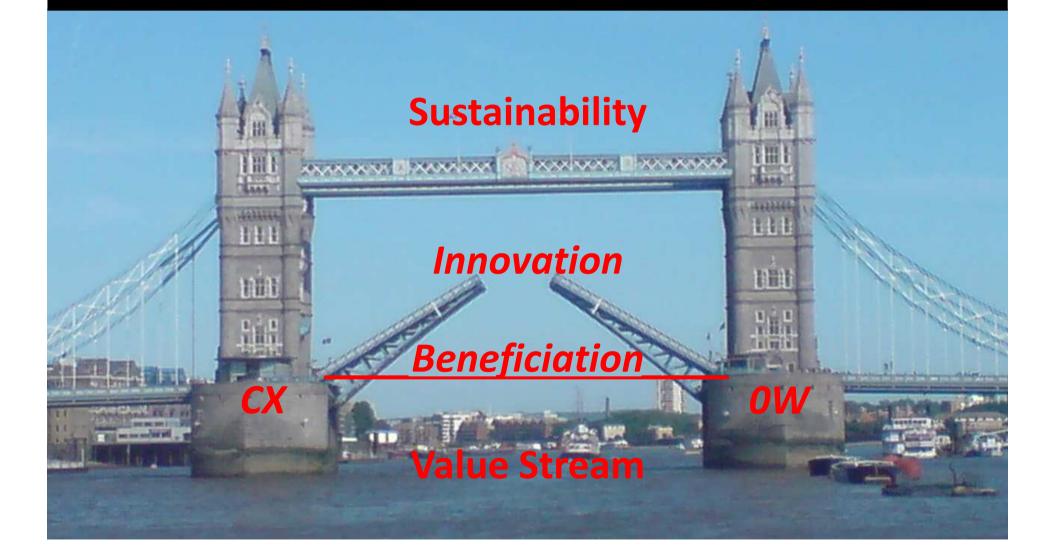
- Sustainability: The capacity of the present generation to meet its needs without compromising or impairing the ability of future generations to meet theirs
- Comprehensive extraction (CX): "comprehensive extraction⁺ and conservation of earth's mineral reserves and resources"* - all resources are co-products
- Zero waste (OW): Zero waste
- Innovation: New capabilities through continuous improvement or creative disruption
- Beneficiation: Making resources better or making better resources

 the rise of the co-product and the by-product
- Value stream release: The development and use of new economic resources from "residuals" (System of Environmental-Economic Accounting (SEEA))

* TRUBETSKOY, K.N., Mining Sciences: Development and Conservation of the Mineral Resources of the Earth, Academy of Mining Sciences, Moscow (1997).

⁺ Dr. Pingru Zhong, IAEA Technical Meeting on Uranium from Unconventional Resources, September 2011

The terms of the new equilibrium


Sustainability

Comprehensive extraction + Zero waste Innovation + Beneficiation

CHALLENGES AND SOLUTIONS

Proof of concept: UxP

Uranium...

... Phosphate

... co-products across their life-cycles

Challenging the boundaries of "conventional" and "unconventional" resource provenance

СХ

Co-Products

PHOSPHATE ROCK

What do I see?

CONVENTIONAL OR UNCONVENTIONAL?

The world' largest uranium mine is a copper mine

The world's largest uranium deposit is a phosphate "province"

OW "The Release of Residuals" Tailings and Residues

PHOSPHATE ROCK:

Primary resource -

PHOSPHATE MINE TAILINGS:

"Waste"- 25% P₂O₅

PROCESSING RESIDUES What am I looking at?

Phospho-gypsum: Waste or Resource? Innovation and Beneficiation Constructive Regulation: Co-products of phosphate No.78 Radiation Protection and Management of NORM Residues in the Phosphate Industry

Safety Reports Series

Phosphogypsum is an affordable, safe Soil Amendment, construction resource etc etc - not a Waste

HALY

oes it go here.

Does it go here:

III

Does it go here?

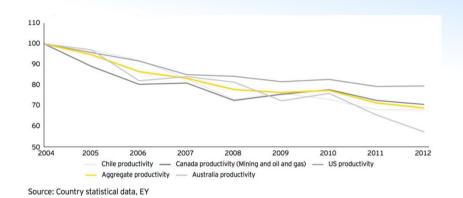
Does it go

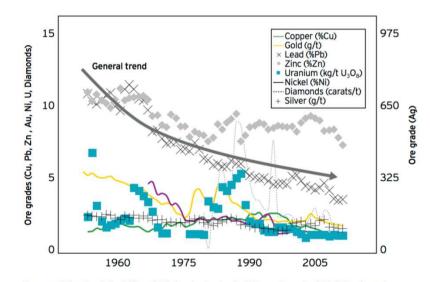
here?

Secondary Resources and Comprehensive Extraction

- 1. What are Secondary mineral resources?
 - by-product in mining
 - by/co-product from reprocessing of waste, tailings and residues
 - by/co-product arising from clean-up of materials
 - by/co-product for environmental management activities, such as environmental remediation
- 2. Advantages in recovery
 - improves the recovery of main product, or other co-products
 - open avenues to CX recovery of many other materials
 - produce cleaner down stream products
 - introduces innovative technologies that can have spin-off benefits
 - positive benefits on the health, safety and environment
- 3. Unconventional uranium resources are often 6-7 x more
 - Proper assessment, classification and management using UNFC-2009 required
 - Supply depends on a successful CX business model
- 4. Traditional mining mindset needs to change?
 - See only one target material not enough?

Some past experiences with U




- By product of Copper
 - Bingham Canyon, USA, 1978-89, 2-15 ppm, 50 tU/y
 - Twin Buttes, Arizona, USA, 100 tU/y
 - Yerington, Nevada, USA
- Polymetallic Iron Oxide Breccia Complex
 - Olympic Dam, Australia (Currently, ongoing co-product of Cu and Ag 3 353 tU/y)
- Carbonatite
 - Phalabora, South Africa until 2001 640 tU (30-40 ppm) as by-product of Cu, etc
- Coal-lignite
 - Freital-Gittersee deposit, Germany, 3 700 tU, 0.12% U
 - Dakota Plains, USA
 - Min-Kush, Kyrghystan
- Paleo quartz pebble conglomerate Au U
 - Continues in South Africa
- Phosphate
 - Florida, USA, 17 500 tU (1978 1991)
 - Belgium (from Moroccan phosphate rock)
- Shale
 - Schmirchau-Reust, Drosen, Paitzdorf, Germany

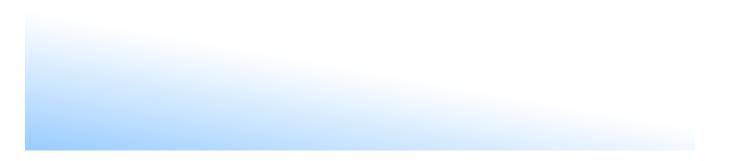
Comprehensive extraction

- Mining in general is seeing declines in capital and labour productivity – mostly due to decline in ore grades combined with upgradation of mining infrastructure
- Comprehensive extraction in 1990s looked into technical feasibility of extraction form lower grade and other uneconomical resources
- Now it is seen as a way to improve overall economics and address health, safety and environmental issues

Source: "The Sustainability of Mining in Australia," Department of Civil Engineering, Monash University and the Mineral Policy Institute, April 2009, http://users.monash.edu.au/~gmudd/sustymining.html accessed 23 September 2014.

Change in mindset

Mostly overlooked Columbite from Pitinga project, Brazil (Mineração Taboca)


Óxidos	Teores (%)	Óxidos	Teores (%)	Óxidos	Teores (%)	Bulk concentrate	Potential recovery of Nb, Ta, Mixed Heavy REO, Other O
Nb ₂ O ₅	29,3	Al ₂ O ₃	1,14	P ₂ O ₅	0,192	acid leaching	Condensor acid recovery REO, Th rich solution Selectiv solvent extra
PbO	13,5	Y ₂ O ₃	0,939	Gd ₂ O ₃	0,181	Filter Cake:	
SiO ₂	10,9	CeO ₂	0,811	Sm ₂ O ₃	0,172	Filtration Filtration	Acid leaching in rotary kiln Precipita
Fe ₂ O ₃	9,17	HfO ₂	0,746	Pr ₆ O ₁₁	0,143		
ZrO ₂	6,55	K ₂ O	0,544	Ho ₂ O ₃	0,130	Solvent extraction	Water leaching
(ThO ₂	4,90	TiO ₂	0,516	WO ₃	0,117	Nb rich Ta rich	RE oxide
Ta ₂ O ₅	3,81	CaO	0,514	La ₂ O ₃	0,109	solution solution	Filtration Solid waste
(U3O8	3,16	ZnO	0,445	SrO	0,071	Precipitation Crystallisation	→ Zi, III, 0 → Selectin rich solution → solvent extr
F	2,04	Dy ₂ O ₃	0,331	Cr ₂ O ₃	0,032		REO, Zr, U, Th, Hf rich solution
SnO ₂	1,89	Yb ₂ O ₃	0,315	PF	3,97		Selective solvent extraction
MnO	1,64	Er ₂ O ₃	0,312			Calcination Drying	
Na ₂ O	1,18	Nd ₂ O ₃	0,215			\downarrow \downarrow	Zr/Hf
			,			Nb2O5 Ta Salt	oxide

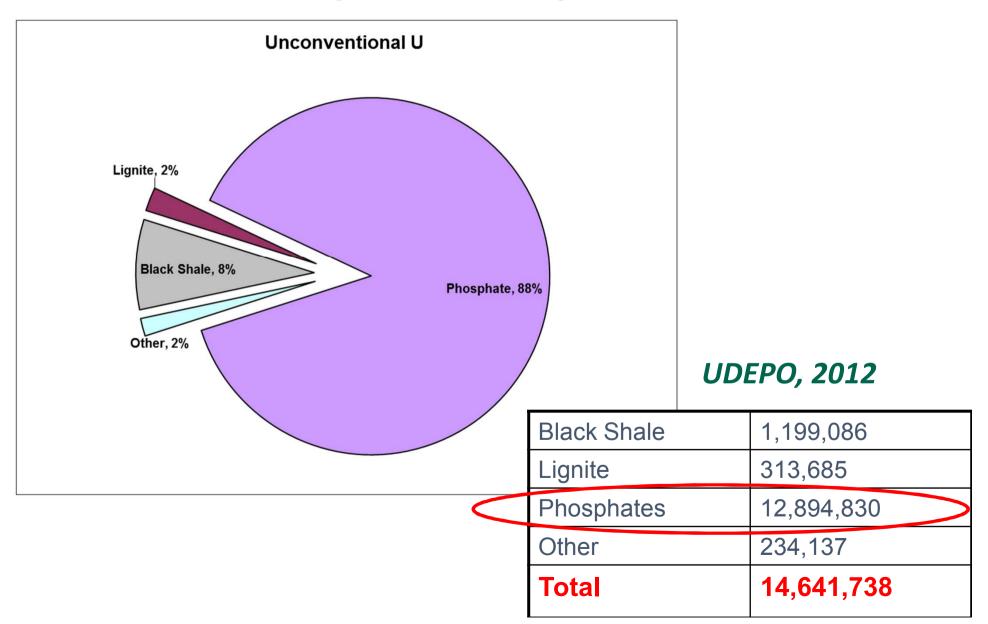
Currently produces Sn; and minor Nb, Ta (6.5% recovery). Has decided to produce additional Ta, Nb, Y, REE, U and Th by 2020.

Future possibilities for U (1/2)

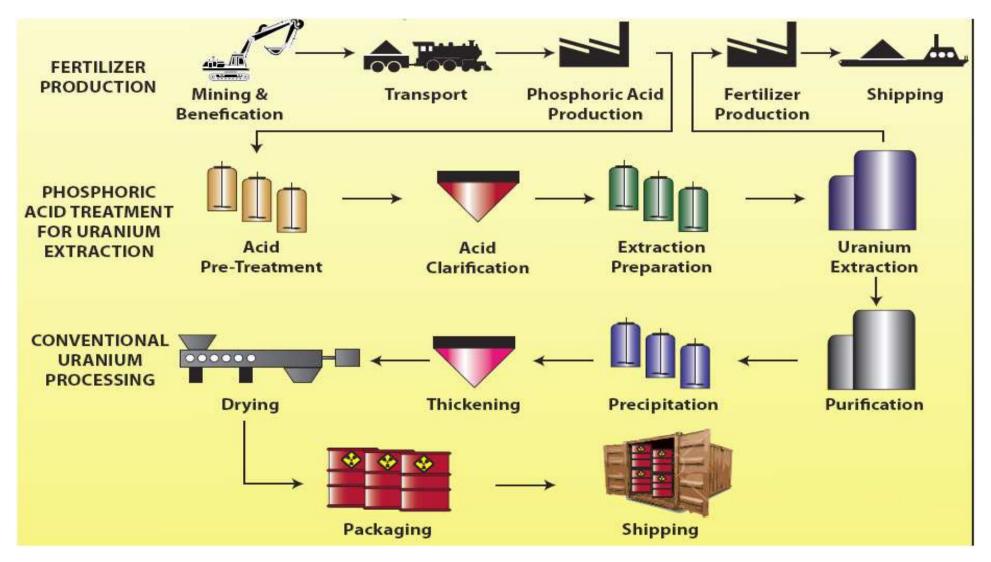
Νο	Country	Project	Operator	Deposit type	Materials recovered	Nominal production capacity (tU/y)
1	Australia	Nolans Bore	Arafura Resources	Intrusive/Peralka line complex	REE, P, Th, U	130
2	Greenland	Kvanefjeld	Greenland Minerals and Energy Limited	Intrusive/Peralka line complex	REE, U, Zn, Flurospar	425
3	Malawi	Kanyika	Globe Metals and Mining	Intrusive/Peralka line complex	Nb, Ta, Zr, U	60
4	Brazil	Pitinga	Mineração Taboca	Intrusive/Peralka line complex	Sn, Nb, Ta, REE, Th, U	?
5	Chile	Chuquicamata	CCHEN - CODELCO Norte	Intrusive/Quartz monzonite	Cu, U, Mo	85
6	Sweden	Häggån	Aura Energy	Black Shale	U, Ni, Mo	3000
7	Finland	Talvivaara	Talvivaara Sotkamo Ltd	Black Shale	Ni, Zn, Cu, Co, U	350*

Future possibilities for U (2/2)

No	Country	Project	Operator	Deposit type	Materials recovered	Nominal production capacity (tU/y)
8	Morocco		OCP	Phosphate	U	1900
9	USA	Plant City	CF	Phosphate	U	2680
10	Brazil	Santa Quitéria	INB – Galvani JV	Metamorphite/M arble hosted Phosphate	P, U, Th	970
11	South Africa	TPM Uranium Project	Harmony Gold	Paleo Quartz- pebble conglomerate	Au, U	340
12	South Africa	Free State Tailings Uranium Project	Harmony Gold	Paleo Quartz- pebble Conglomerate tailings	U	700
13	South Africa	Springbok Flats (Settlers area)	HolGoun Uranium & Power	Coal-lignite	Coal, U	600
14	Canada	Eco Ridge	Pele Mountain Resources	Paleo-quatz pebble conglomerate	REE, Sc, Eu, Gd, U	~950


The Co-product Options

No	Туре	Number of reported world deposits	Number of U deposits recorded in UDEPO	Total Resources in UDEPO (t U)	Average Grade (ppm U)	Remarks
1	Intrusive (Carbonatite, Peralkaline, Plutonic, Quartz monzonites)	646 – Porphyry copper deposits ^a 125 – Peralkaline complex ^b 527 – Carbonatites ^c	33	896 883	40 – 6 400	REE, Nb, Ta, Zr, U, Cu, Au, Ag, Mo
2	Polymetallic Iron Oxide Breccia Complex	33 ^d (numerous ^e)	16	2 438 773	60 - 850	Cu, Au, Ag, U
3	Lignite-coal	2700 ^f (23 057 billion tonnes Reserves + Resources ^g)	35	7 388 122	20 – 1 700	U, Ge
4	Phosphate	1635 ^h (300 billion tonnes ⁱ)	57	14 058 525	10 – 3 033	P, S, Sc,F, REE, U
5	Black shale		50	20 963 792	17 - 1200	Ni, Co, Cu, U
6	Paleo quartz-pebble conglomerate (Au dominant)		64 ^j	1 670 147	30-80	Au, U
	Paleo quartz-pebble conglomerate (U dominant)		25	467 342	30-80	U, REE
7	Heavy mineral sands		77 ^k			REE, Ti, Th, Zr, Sn
8	Lignite-coal ash	21 billion tonnes ¹				U, Ge, Mo, etc
9	Mine tailings					Multiple, U
10	Mine wastes					Multiple, U
11	Mine water					Multiple, U
12	Phosphogypsum	2.6 – 3.7 billion tonnes ^m				REE, F, S, U
13	Metal slags					Sn, Nb-Ta slags with U
14	Sea water			4 500 000 000	3.3 ppb	Multiple, U
Total	(excluding seawater)		47 883 584			


a- Singer. et.al. 2005; b- Orris and Grauch, 2002; c - Woolley and Kjarsgaard, 2008; d – Cox and Singer, 2007; e- Barton, 2014; f - IHS Global Coal Database; g - BGR, 2014; h – Chernoff, 2002; i – USGS, 2015; j – including gold tailings, S. Africa; k – ThDEPO; I – Monnet, 2014; m – IAEA, 2013

UxP – The Co-product Option

AlefGroup

UxP - U as P co-products for energy and food

Resource Sustainability: the New Equilibrium Building the bridge to the future from both ends

anne ann Bearrainn 🙆 baairres Bearrainn

181

1.1.1

CX

The Social Licence to Operate

Thank you for your kind attention

Hari Tulsidas h.tulsidas@outlook.com Julian Hilton juliankh@aol.com Brian Birky bbirky@flpoly.org Rafael García Tenorio Gtenorio@us.es

